Physics of a two-dimensional electron gas with cold atoms in non-Abelian gauge potentials
نویسندگان
چکیده
Motivated by the possibility of creating non-Abelian fields using cold atoms in optical lattices, we explore the richness and complexity of noninteracting two-dimensional electron gases 2DEGs in a lattice, subjected to such fields. In the continuum limit, a non-Abelian system characterized by a two-component “magnetic flux” describes a harmonic oscillator existing in two different charge states mimicking a particle-hole pair where the coupling between the states is determined by the non-Abelian parameter, namely, the difference between the two components of the “magnetic flux.” A key feature of the non-Abelian system is a splitting of the Landau energy levels, which broaden into bands, as the spectrum depends explicitly on the transverse momentum. These Landau bands result in a coarse-grained “moth,” a continuum version of the generalized Hofstadter butterfly. Furthermore, the bands overlap, leading to effective relativistic effects. Importantly, similar features also characterize the corresponding two-dimensional lattice problem when at least one of the components of the magnetic flux is an irrational number. The lattice system with two competing “magnetic fluxes” penetrating the unit cell provides a rich environment in which to study localization phenomena. Some unique aspects of the transport properties of the non-Abelian system are the possibility of inducing localization by varying the quasimomentum, and the absence of localization of certain zero-energy states exhibiting a linear energymomentum relation. Furthermore, non-Abelian systems provide an interesting localization scenario where the localization transition is accompanied by a transition from relativistic to nonrelativistic theory.
منابع مشابه
Light-induced gauge fields for ultracold atoms.
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle-the graviton-that mediates the gravitationa...
متن کاملTwo-Dimensional Electron Gas with Cold Atoms in Non-Abelian Gauge Potentials
Motivated by the possibility of creating non-Abelian fields using cold atoms in optical lattices, we explore the richness and complexity of non-interacting two-dimensional electron gases (2DEGs) in a lattice, subjected to such fields. In the continuum limit, a non-Abelian system characterized by a two-component “magnetic flux” describes a harmonic oscillator existing in two different charge sta...
متن کاملMetal-insulator transition revisited for cold atoms in non-Abelian gauge potentials.
We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. For Abelian gauges, such transitions occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian...
متن کاملQuantum Hall-like effect for cold atoms in non-Abelian gauge potentials
We study the transport of cold fermionic atoms trapped in optical lattices in the presence of artificial Abelian or non-Abelian gauge potentials. Such external potentials can be created in optical lattices in which atom tunneling is laser assisted and described by commutative or non-commutative tunneling operators. We show that the Hall-like transverse conductivity of such systems is quantized ...
متن کاملDouble and negative reflection of cold atoms in non-Abelian gauge potentials.
Atom reflection is studied in the presence of a non-Abelian vector potential proportional to a spin-1/2 operator. The potential is produced by a relatively simple laser configuration for atoms with a tripod level scheme. We show that the atomic motion is described by two different dispersion branches with positive or negative chirality. As a consequence, atom reflection shows unusual features, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008